A NEW REARRANGED LANOSTANOID, MARIESIIC ACID A, FROM THE SEED OF ABIES MARIESII

Shinichi HASEGAWA, * Tadayoshi MIURA, Yoshiyuki HIROSE, and Yoichi IITAKA †

Department of Applied Biological Science, Faculty of Science and Technology, Science University of Tokyo, Noda 278

Faculty of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113

An antimicrobial triterpenoic acid, named mariesiic acid A, has been isolated from the seed of $\underline{Abies\ mariesii}$. The structure with a rearranged lanostane-type skeleton has been elucidated by spectral and X-ray diffraction analyses.

Our examination of the seed extract of <u>Abies mariesii</u> Mast.(Pinaceae) led to the isolation of several new triterpenoic acids showing antimicrobial activity against some Gram-positive bacteria. The major substance of them, named mariesiic acid A (<u>1a</u>), mp 197-200 °C (fine needles from ethyl acetate), [α]_D +116 ° (c 1.73, acetone), has a molecular formula of C₃₀H₄₆O₄ [m/z 470.3411(M⁺, calcd: 470.3398)] and shows IR (KBr) absorption bands at 2625, 1685, 1230 (COOH), 3400, 1055 (OH), 1640 (C=C), 980, 905, 800, and 750 cm⁻¹ and a UV absorption maximum at 215.5 nm (ϵ 17700, EtOH).

On treatment with diazomethane, $\underline{1a}$ gave a monomethyl ester ($\underline{1b}$), which on acetylation afforded a diacetate ($\underline{1c}$) indicating that $\underline{1a}$ included one carboxylic and two hydroxyl groups. The 1 H NMR spectrum (400 MHz) of $\underline{1b}$ shows the presence of a secondary methyl [δ 0.94 (d, J=7.0 Hz)], a vinylic methyl [δ 1.87 (d, J=1.4 Hz)], and a methoxycarbonyl [δ 3.76 (s)] groups, five tertiary methyl groups [δ 0.86, 0.93, 0.94, 0.97, and 1.00 (each s)], two hydroxylmethine protons [δ 3.47 (br. s, W_2^1 =7.0 Hz) and 4.57 (ddd, J=2.6, 8.0, 10.5 Hz)], and three olefinic protons [δ 5.18 (br. s, W_2^1 =7.0 Hz), 5.57 (br. d, J=4.2 Hz), and 6.71 (dd, J=1.4, 8.0 Hz)].

The above spectral features and co-occurrence of abieslactone $(\underline{2})^{1,2}$ in the bark and leaves of the same plant suggest that mariesiic acid A is a dehydro derivative of $(24E)-3\alpha$,23-dihydroxy-lanosta-24-en-26-oic acid or its methyl-rearranged isomers, and then its two double bonds in the ring are trisubstituted since the olefinic proton signals (δ 5.18 and 5.57) are not mutually coupled, which is confirmed by the ¹H shift-correlated 2D-NMR spectrum of <u>1b</u>.

Except for the absolute configuration, the gross structure of mariesic acid A was established by X-ray diffraction analysis. The crystals were grown in an ethanol solution as colorless thick plates, mp 153-155 $^{\circ}$ C, solvated with ethanol. A small specimen of approximate dimensions 0.2 mm x 0.4 mm x 0.5 mm was cut from

the crystal and used for X-ray diffraction study. The specimen was coated with epoxy resin to prevent evaporation of solvent of crystallization.

The cell dimensions and intensity data were obtained from the measurement on a Philips PW1100 diffractometer using Cu $K\alpha$ radiation monochromated with graphite plate.

Crystal data of mariesiic acid A ethanol solvate, $C_{30}H_{46}O_4 \cdot C_2H_5OH$, are as follows: FW=516.8, monoclinic, space group P2₁, a=14.265(8), b=10.150(6), c=11.030(8) Å, β =98.21(5)°, V=1581 Å³. z=2, D_c =1.086 g cm⁻³, μ for Cu K α =5.3 cm⁻¹.

Intensities of 3203 reflections out of 3520 theoretically possible ones were measured as above the $2\sigma(I)$ level in 2θ range 6° through 156°.

The crystal structure was determined by the direct method based on MULTAN procedure and refined by the block-diagonal least-squares method. The terminal methyl carbon atom of ethanol molecule was found to be disordered due to the rotation and distributed mainly to the two sites (shown in Fig. 1 by C2 and C2', bonded to O1-C1): the occupancy factor for each site was estimated to be 0.5. All 46 hydrogen atoms except those belonging to ethanol molecule were located on the difference electron-density map and refined with isotropic temperature factors. The final R value was 0.059. The molecular structure is illustrated in Fig. 1 drawn by PLUTO program. The solvent ethanol molecule is hydrogen bonded to O1 [01(S)···O1 2.727(6) Å] and O2 [01(S)···O2 2.691(7), O1(S)···HO2 1.79(6) Å]. Another intermolecular hydrogen bond to be of note is that between O1 and O3 [01···O3 2.766(6), HO1···O3 1.79(7) Å].

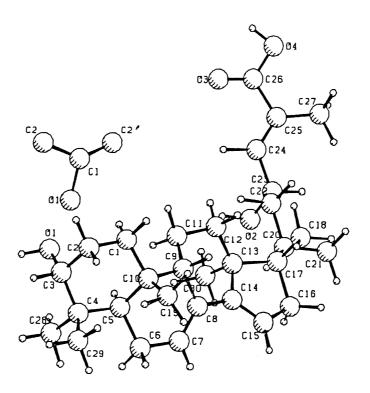


Fig. 1. Molecular structure of mariesiic acid A.

The absolute configuration was determined by the CD measurement for \underline{p} -dimethylaminobenzoate ($\underline{1d}$) of $\underline{1b}$ according to the exciton chirality method for allyl benzoate. The benzoate $\underline{1d}$ was prepared by the following manner.

On treatment with p-dimethylaminobenzoyl chloride in pyridine (105 °C, 2h), 1b gave a chromatographically unseparable mixture of monobenzoates (1d and 1e) and a dibenzoate. The disired benzoate, 1d, was isolated from the mixture by the conversion of 1e into its 23-oxo derivatve with activated manganese dioxide followed by slica gel chromatography. [1d: a gum, $\lambda_{\rm max}$ (EtOH) 210 (ϵ 29000), 223 (20000), 311.5 nm (22000); ¹H NMR (CDCl₃): δ 7.86, 6.65 (each 2H, d, J=10 Hz, aromatic protons), 6.70 (1H, br. d, J=9 Hz, 24-H), 5.84 (1H, br. t, J=9 Hz, 23-H), 3.72 (3H, s, -COOMe), 3.48 (1H, br. s, 3-H), 3.04 (6H, s, -NMe₂)].

The coupling constant, 9 Hz, between 23-H and 24-H in the $^1 H$ NMR spectrum of $\underline{1d}$ and a negative first Cotton effect at 307 nm ($\Delta_{\rm E}$ -4.75) in the CD spectrum suggested that the configuration of C-23 was R as shown in Fig. 2. Thus, the structure of mariesiic acid A is represented by formula $\underline{1a}$.

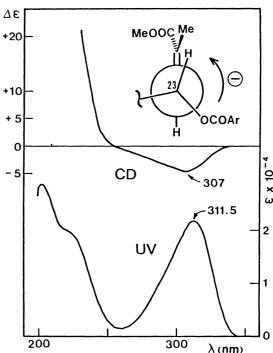


Fig. 2. CD and UV spectra of p-dimethylaminobenzoate (1d) of mariesiic acid A in EtOH.

Mariesiic acid A is a new triterpene having a methyl-rearranged skeleton of lanostane and might be produced biogenetically by enzymic dehydrogenation of 17-H of a lanosatane-type skeleton followed by successive rearrangements of methyl groups at C-13 and C-14.

Upon antimicrobial test using paper disc method, mariesiic acid A indicated activity against Gram-positive bacteria and actinomycetes as shown in Table 1.

We acknowledge Mr. Hideaki Kondo, Taisho Pharmaceutical Co., LTD., for the measurement of the 2D-NMR spectrum of $\underline{1b}$.

Test organism	Diameter of clear zone/mm		
	30 μg/disc	15 μg/disc	7.5 µg/disc
Bacillus subtilis	14	12	9
Micrococcus luteus	15	13	9
Escherichia coli	-	-	_
Pseudomonas aeruginosa	_	-	-
Nocardia carollina	11	10	9
Sacchromyces cerevisiae	-	-	-
Candida utilis	_	-	-

Table 1. Antimicrobial spectra of mariesiic acid A^{7})

References

- 1) S. Ueo, J. Okada, S. Matsunaga, and J. W. Rowe, Tetrahedron, 24, 2859 (1968).
- 2) F. H. Allen, N. W. Isaacs, O. Kennard, and W. D. S. Motherwell, J. Chem. Soc., Perkin Trans. 2, 1973, 498.
- 3) <u>MULTAN</u>, P. Main, M. M. Woolfson, and G. Germain, Acta Crystallogr., Sect. A, 27, 368 (1971).
- 4) The atomic coordinates will be compiled in Cambridge Crystallographic Database and the thermal parameters and Fo, Fc tables may be obtained from one of the authors (Y. I.) on request.
- 5) <u>PLUTO</u>, in Cambridge Crystallographic Database, Cambridge Crystallographic Data Centre, University Chemical Laboratory, Lensfield Road, Cambridge, CB2 1EW, England.
- 6) N. Harada, Yuki Gosei Kagaku Kyokai Shi, <u>41</u>, 1143 (1983).
- 7) The inhibitory activity was represented by the diameter of clear zone using paper disc (ϕ 8 mm) after incubation at 30 °C for 21 h.

(Received August 10, 1985)